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1 Flaws in Euclid

The description of “a point between two points, line separating the plane into two sides, a
segment is congruent to another segment, and an angle is congruent to another angle,” are
only demonstrated in Euclid’s Elements.

2 Axioms of Betweenness

Points on line are not unrelated. We assume that there is a ternary relation among points,
named as “point B is between point A and point C,” abbreviated as

A ∗B ∗ C

Given distinct collinear points A,B,C,D. We use

A ∗B ∗ C ∗D

to denote the following simultaneous relations of betweenness

A ∗B ∗ C, A ∗B ∗D, A ∗ C ∗D, B ∗ C ∗D. (1)

Betweenness Axiom 1 (BA1) (Collinearity and symmetrization). If A∗B ∗C, then
A,B,C are three distinct points all lying on the same line, and C ∗B ∗ A.

Betweenness Axiom 2 (BA2) (Extension). Given two distinct points B and D on a
line l. There exist points A,C,E lying on line l such that A∗B ∗D, B ∗C ∗D, and B ∗D∗E;
see Figure 1.

EBA C D

Figure 1: Betweenness Axiom 2

Betweenness Axiom 3 (BA3) (Uniqueness). Let A,B,C br three distinct points on a
line. Then one and only one of the three points is between the other two.

Definition 1 (Line, segment, and ray). The line determined by two distinct points A
and B is denote by

AB.
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We also use AB to denote the set of all points incident with the line determined by points
A and B. A segment with endpoints A and B, denoted

AB,

is the set of points A,B, and all points between A and B. A ray emanating from a point A
to another point B, denoted

r(A,B),

is the set of all points on AB and all points C such that A∗B ∗C. An open ray emanating
from a point A to another point B is the set

r̊(A,B) := r(A,B)r {A}.
Proposition 2.1. For any two distinct points A and B,

AB = r(A,B) ∩ r(B, A), AB = r(A,B) ∪ r(B, A).

Proof. Note that AB ⊆ r(A,B) ∩ r(B, A) by definition of segment and ray. For each point
P ∈ r(A,B) ∩ r(B, A), we have P ∈ r(A,B) and P ∈ r(B, A). Suppose P 6∈ AB. By
definition of ray, we have A ∗ B ∗ P by P ∈ r(A,B) and P ∗ A ∗ B by P ∈ r(B, A). Then
A,B, P are three distinct collinear points by BA1. This is contradictory to BA3 that there
is only one point of the three A,B, P between the other two.

It is clear that r(A,B) ∪ r(B, A) ⊆ AB. For each P ∈ AB, if P ∈ AB, it is clear that
P ∈ r(A,B) ∪ r(B, A). Assume P 6∈ AB, then A,B, P are three distinct points by BA1,
and one of them is between the other two by BA3. Since P is not between A and B, we
have either A is between B and P or B is between A and P . In the formal case, we have
P ∈ r(B, A); in the latter case, we have P ∈ r(A,B). Hence P ∈ r(A,B) ∪ r(B, A).

Definition 2 (Same side and opposite side). Two points A,B not on a line l are said
to be on the same side of l if A = B or the segment AB does not meet l. Two points A,B
not on a line l are said to be on opposite sides of l if AB does not meet l.

Betweenness Axiom 4 (BA4) (Plane separation). Let A,B,C be three distinct points
not on a line l.

(i) If A,B are on the same side of l and B, C are on the same side of l, then A,C are on
the same side of l.

(ii) If A,B are on opposite sides of l and B, C are on opposite sides of l, then A,C are
on the same side of l.

The relation of being on the same side of a fixed line l is an equivalence relation on the
set of points not on the line l, since it is reflexive, symmetric, and transitive by definition
and Betweenness Axiom 4(i). Each equivalence class is called an open half-plane bounded
by l. For each point P not on l, we denoted by

H̊(l, P )

the open half-plane that contains P . The set

H(l, P ) := H̊(l, P ) ∪ l

is called a half-plane (or closed half-plane) bounded by l.

Corollary 2.2. For each line l there are exact two half-planes bounded by l.
(iii) If A,B are on opposite sides of l and B, C are on the same side of l, then A,C are

on opposite sides of l.
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Proof. Let A,B be two points on opposite sides of a line l. We have two distinct half-planes
H(l, A) and H(l, B). Given an arbitrary point C not on l. If A,C are on the same side of
l, then H(l, C) = H(l, A). If A,C are on opposite sides, then B, C are on the same side of
l by Betweenness Axiom 4(ii). Thus H(l, C) = H(l, B). Therefore there are at most two
half-planes bounded by l.

Given a point B on l and a point D not on l. By Betweenness Axiom 2 there exist points
A,C,E such that A ∗ B ∗D, B ∗ C ∗D and B ∗D ∗ E. Then A,D are on opposite sides of
l. So there are at least two half-planes bounded by l.

Proposition 2.3 (Linearity rules). Let A,B,C,D be distinct points on a line l. Then
(a) A ∗B ∗ C, A ∗ C ∗D ⇒ A ∗B ∗ C ∗D.
(b) B ∗ C ∗D,A ∗B ∗D ⇒ A ∗B ∗ C ∗D.
(c) A ∗B ∗ C, B ∗ C ∗D ⇒ A ∗B ∗ C ∗D.

Proof. (a) Pick a point E outside l and make line EC; see Figure 2. Then C is the unique

E

BA C D

Figure 2: Betweenness and separation axioms imply linearity

intersection of l and EC. The points A,B must be on the same side of line EC. (Otherwise,
AB meets EC at C; we then have A∗C∗B, which contradicts A∗B∗C.) Since A∗C∗D, then
A,D are on opposite sides of EC. Hence B, D are on opposite sides of EC by Corollary 2.2,
i.e., BD meets EC at C. We then obtain B ∗ C ∗D.

Draw line EB; the point B is the unique intersection of l and EB; see Figure 2. Since
A ∗ B ∗ C, then A,C are on opposite sides of EB. Since B ∗ C ∗D, we must have C, D on
the same side of EB. (Otherwise B would be between C and D, contradicting to B ∗C ∗D.)
Thus A,D are on opposite sides of EB by Corollary 2.2, i.e., AD meets EB at B between
A and D. We then obtain A ∗B ∗D.

(b) is similar to (a) by reversing the order.
(c) Note that A,B,C are distinct and B, C, D are distinct. If A = D, then B ∗ C ∗ D

becomes B ∗ C ∗ A, which is contradictory to A ∗B ∗ C. So A,B,C,D are distinct.
Pick a point E outside l and draw the line EC. Since B∗C∗D, then B, D are on opposite

sides of EC by definition. Likewise, A ∗ B ∗ C implies that A,B are on the same side of
EC. (Otherwise, A,B are on opposite sides of EC, i.e., AB meet EC at C; so A ∗ C ∗ B,
contradicting to A ∗B ∗C.) It follows from Corollary 2.2 that A,D are on opposite sides of
EC. Hence AD meets EC at C between A and D, i.e., A ∗ C ∗D.

Definition 3 (Strict total order). A binary relation ≺ on a set X is called a strict total
order if

(TO1) Irreflexivity: x 6≺ x for all x ∈ X;
(TO2) Transitivity: if x ≺ y and y ≺ z then x ≺ z;
(TO3) Completeness: either x ≺ y or y ≺ x but not both for all x, y ∈ X with x 6= y.
For a strict total order on X, the relation ¹, defined on X by x ¹ y if x = y or ≺ y, is

called a total order. For an order relation, we also write x ≺ y and x ¹ y as y Â x and
y º x respectively. The set X with a total order is said to be totally ordered.
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Proposition 2.4 (Strict total order of line). For each line l with two distinct points
A,B there exists a unique total order on l such that A ≺ B and if C ∗D ∗ E then either

C ≺ D ≺ E or E ≺ D ≺ C

but not both.

Proof. Define A ≺ B. For each point P of l other than A,B, we define
(1) P ≺ A and P ≺ B if P ∗ A ∗B,
(2) A ≺ P and P ≺ B if A ∗ P ∗B,
(3) A ≺ P and B ≺ P if A ∗B ∗ P .

For any two distinct points P,Q other than A and other than B, we define

P ≺ Q if one of the following holds:

(I) P ∗Q∗A∗B, (II) P ∗A∗Q∗B, (III) P ∗A∗B ∗Q, (IV) A∗P ∗Q∗B, (V) A∗P ∗B ∗Q,
(VI) A ∗B ∗ P ∗Q. We claim that ≺ is a strict total order on l.

It is clear that ≺ satisfies irreflexive and completeness. For transitivity, let P ≺ Q and
Q ≺ R, we claim P ≺ R. If {P,Q, R} ∩ {A,B} 6= ∅, we clearly have P ≺ R by definition of
≺. If {P,Q, R} ∩ {A,B} = ∅, we verify the six cases.

Case I. P ∗Q ∗ A ∗B.
(I.1) Q∗R∗A∗B: Since P ∗Q∗A and Q∗R∗A, then P ∗Q∗R∗A by Proposition 2.3(b).

Since P ∗ R ∗ A and R ∗ A ∗ B, then P ∗ R ∗ A ∗ B by Proposition 2.3(c). Hence P ≺ R by
definition.

(I.2) Q∗A∗R∗B: Since P ∗Q∗A and Q∗A∗R, then P ∗Q∗A∗R by Proposition 2.3(c).
Since P ∗ A ∗ R and A ∗ R ∗ B, then P ∗ A ∗ R ∗ B by Proposition 2.3(c). Hence P ≺ R by
definition.

(I.3) Q∗A∗B ∗R: Since P ∗A∗B and A∗B ∗R, then P ∗A∗B ∗R by Proposition 2.3(c).
By definition P ≺ R.

Case II. P ∗ A ∗Q ∗B.
(II.1) A∗Q∗R∗B: Since P ∗A∗B and A∗R∗B, then P ∗A∗R∗B by Proposition 2.3(b).

By definition P ≺ R.
(II.2) A∗Q∗B∗R: Since P ∗A∗B and A∗B∗R, then P ∗A∗B∗R by Proposition 2.3(c).

By definition P ≺ R.
Case III. P ∗ A ∗B ∗Q.
(III.1) A∗B∗Q∗R: Since P ∗A∗B and A∗B∗R, then P ∗A∗B∗R by Proposition 2.3(c).

By definition P ≺ R.
Case IV. A ∗ P ∗Q ∗B.
(IV.1) A∗Q∗R∗B: Since A∗P ∗Q and A∗Q∗R, then A∗P ∗Q∗R by Proposition 2.3(a).

Since P ∗ Q ∗ B and Q ∗ R ∗ B, then P ∗ Q ∗ R ∗ B by Proposition 2.3(b). We then have
A ∗ P ∗R and P ∗R ∗B. Thus A ∗ P ∗R ∗B by Proposition 2.3(c). By definition P ≺ R.

(IV.2) A∗Q∗B∗R: Since A∗P ∗B and A∗B∗R, then A∗P ∗B∗R by Proposition 2.3(a).
By definition P ≺ R.

Case V. A ∗ P ∗B ∗Q.
(V.1) A∗B∗Q∗R: Since A∗P ∗B and A∗B∗R, then A∗P ∗B∗R by Proposition 2.3(a).

By definition P ≺ R.
Case VI. A ∗B ∗ P ∗Q.
(VI.1) A∗B∗Q∗R: Since B∗P ∗Q and B∗Q∗R, then B∗P ∗Q∗R by Proposition 2.3(a).

Since B∗P ∗R and A∗B∗R, then A∗B∗P ∗R by Proposition 2.3. By definition P ≺ R.
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Proposition 2.5 (Line separation). Let A,B,O be three distinct points such that A∗O∗B.
Then

r(O,A) ∩ r(O,B) = {O}, r(O,A) ∪ r(O,B) = AB.

If P ∈ AB, then either P ∈ r(O,A) or P ∈ r(O,B). The rays r(O,A) and r(O,B) are said
to be opposite each other.

Proof. Let ≺ be the strict total order on the line l such that A ≺ B. By definition of the
total order ¹, the rays r(O,A), r(O,B), and the segment AB, we have

r(O,A) = {P ∈ l : P ¹ O}, r(O,B) = {P ∈ l : O ¹ P}, AB = {P ∈ l : A ¹ P ¹ B}.

Then r(O,A) ∩ r(O,B) = {O} and r(O,A) ∪ r(O,B) = AB by the total ordering property
of ≺.

Corollary 2.6 (Line separation). Let l, m be two distinct lines intersecting at a point O.
Let ≺ be a strict total order on l. Then the two sets

r̊(O,−) := {P ∈ l : P ≺ O}, r̊(O, +) := {P ∈ l : O ≺ P}

are on opposite sides of m. We also call them on opposite sides of O on l.

Proof. Let A,B be two distinct points on l. If A,B ∈ r̊(O,−), i.e., A ≺ O,B ≺ O, then
for all P between A and B, we have either A ≺ P ≺ B or B ≺ P ≺ A. In either case we
have P ≺ O by transitivity. So AB is contained in r̊(O,−). Clearly, AB does not meet m
(since O is the unique intersection of l and m). Hence A,B are on the same side of m by
definition. Likewise, if A,B ∈ r̊(O, +), i.e., O ≺ A,O ≺ B, then A,B are on the same side
of m. If A ≺ O ≺ B or B ≺ O ≺ A, then in either case AB meets m at O between A and
B; so A,B are on opposite sides of m by definition.

Theorem 2.7 (Pasch’s Theorem). Let A,B,C be distinct points of not collinear. Let l
be a line meeting AB at a point D between A and B. Then one and only one of the three
holds: (i) l meets AC at a point between A and C, (ii) l meets BC at a point between B and
C, (iii) l meets both AC and BC at a point C.

Intuitively, this theorem says that if a line “goes into” a triangle through one side then
it must “come out” through another side.

l

B

CA

P
Q

Figure 3: A line passes through a triangle

Proof. The points A,B are on the opposite sides of the line l. If C is on l, then l does not
meet AC between A and C, otherwise l = AC; and l does not meet BC between B and C.
If C is not on l, then either A,C are on the same side of l, or B, C are on the same side of
l, butt not both. In the formal case, then B, C are the opposite sides of l. Thus l meets BC
at a point between meets B and C, and is disjoint from AC. In the latter case, l meets AC
at a point between A and C, and is disjoint from BC.
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Definition 4 (Interior of angle). Given points A,O, B not collinear. The interior of an
angle ∠AOB, denoted ∠̊AOB, is the set of points P such that P,A are on the same side of
line OB, and P,B are on the same side of line OA, in other words,

∠̊AOB := H̊(OB, A) ∩ H̊(OA,B);

see Figure 4. We also define

∠AOB := H(OB, A) ∩H(OA,B).

It is convenient to consider a closed half-plane as a flat angle.

O

B

P

A

A
O

B

P

Figure 4: Interior of an angle

Proposition 2.8 (Between-Cross Lemma). Given an angle ∠AOB and a point P on
AB. Then P belongs to ∠̊AOB if and only if A ∗ P ∗B.

Proof. “⇒”: The point P belongs to ∠̊AOB. By definition P,B are on the same side of
line OA. Suppose P ∗ A ∗ B. Then P,B are opposite sides of OA, since PB meets OA
at A between P and B. This is a contradiction. Likewise, A ∗ B ∗ P leads to a similar
contradiction. Then we must have A ∗ P ∗B by trichotomy of betweenness.

“⇐”: We have A∗P ∗B. Note that line AB meets line OB at the unique point B. Then
AP does not meet OB. So A,P are on the same side of OB. Likewise, points B, P are on
the same side of OB. Hence by definition P belongs to ∠̊AOB.

Proposition 2.9. Let P be a point in ∠̊AOB. Then
(a) The open ray r̊(O,P ) is contained in ∠̊AOB.
(b) The opposite ray to r(O,P ) is disjoint from ∠̊AOB. See the left of Figure 5.
(c) If B ∗O ∗B′, then A belongs to ∠̊POB′.

P’
O

P

B

A

B’

O P
C

A

B

Figure 5: Property of interior of an angle and Crossbar Theorem

Proof. (a) Let Q be a point on the open ray r̊(O,P ). It is clear that PQ is disjoint from OA
(since the intersection of the two lines PQ, OA are the unique point O). This means that
P,Q are on the same side of OA by definition. Since P ∈ ∠̊AOB, i.e., P,B are on the same
side of OA, then B, Q are on the same side of OA. Likewise, A,Q are on the same side of
OB. Thus Q is an interior point of ∠AOB.
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(b) Let P ′ be a point on the opposite ray of r(O,P ); see the left of Figure 5. Then P, P ′

are on opposite sides of OB. Since A,P are the same side of OB, then A,P ′ are on the
opposite sides of OB. Thus P ′ is not an interior point of ∠AOB by definition.

(c) Note that P,A are on the same side of OB′ (since OB′ = OB and P ∈ ∠̊AOB). We
claim that A,B′ are on the same side of OP . If so, we have A ∈ ∠̊POB′ by definition.

Suppose that A,B′ are on opposite sides of OP , i.e., OP intersects AB′ at C between A
and B′. Then A ∗ C ∗ B′ and C ∈ ∠̊AOB′ by Proposition 2.8. Since C ∈ OP and C 6= O,
we have either C ∈ r̊(O,P ) or C ∈ r̊(O,P ′).

If C ∈ r̊(O,P ), then P ∈ r̊(O,C), which is contained in ∠̊AOB′ by part (a). Thus P,B′

are on the same side of OA (since P ∈ ∠̊AOB′). Since P,B are the same side of OA, we see
that B, B′ are on the same side of OA. This is a contradiction.

If C ∈ r̊(O,P ′), then P ′ ∈ r̊(O,C), which is contained in ∠̊AOB′ by part (a). Thus A,P ′

are on the same side of OB (= OB′) by definition. Since P ′, P are on opposite sides of OB,
we see that A,P are on the opposite sides of OB. This is a contradiction.

Definition 5 (Between rays). A ray r(O,P ) is between two non-opposite rays r(O,A)
and r(O,B) if P is in the interior of ∠AOB (independent of the choice of P on the ray
r(O,P )).

Proposition 2.10 (Crossbar Theorem). If a ray r(O,P ) is between two rays r(O,A) and
r(O,B), then r(O,P ) intersects AB at C between A and B. See the right of Figure 5. The
interior of ∠AOB is a disjoint union of interiors ∠̊AOP , ∠̊BOP , and open ray r̊(O,P ).

Proof. Note that B, B′ are on opposite sides of OP , and B′, A are on the same side of OP ;
see the left of Figure 5. Then A,B are on opposite sides of OP . Thus OP intersects AB.
Since the ray r(O,P ′) (opposite to the ray r(O,P )) is disjoint from the interior of ∠AOB,
and since the open segment (A,B) is contained in the interior ∠̊AOB, then the open ray
r̊(O,P ) must intersect AB at C between A and B; see the right of Figure 5.

Definition 6 (Interior of triangle). The interior of a triangle ∆ABC is the intersection
of interiors of its three angles, denoted ∆̊ABC. The boundary of ∆ABC is the union of
the three sides, i.e.,

∂∆ABC := AB ∪ AC ∪BC.

We also use ∆ABC to denote the union of the interior and the boundary of ∆ABC.

Proposition 2.11. Given a triangle ∆ABC and O ∈ ∆̊ABC. Let l = AB, m = AC,
n = BC. Then

(a) ∆̊ABC = H̊(l, O) ∩ H̊(m,O) ∩ H̊(n,O).
(b) Any ray r(O,P ) meets the boundary of ∆ABC at a unique point Q.

Proof. (a) Trivial by ∠̊ABC = H̊(l, O) ∩ H̊(n,O) and other two interiors of angles.
(b) Let l = OP . The line OA meet BC at D between B and C. We then have A∗O ∗D,

the open ray r̊(D,O) is contained in H̊(n,O), and its opposite half-line is contained in the
opposite side of n. So (A,D) := AD r {A,D} is contained in the interior of ∆ABC.

Case 1. OP = OA. Then Q = A if A ∗ P ∗ O; Q = D if A ∗ O ∗ P . See the left of
Figure 6.

Case 2. OP 6= OA. The line OA separates the triangle ∆ABC into two triangles ∆ABD
and ∆ACD. Since OP meets AD at O between A and D, then OP meets the boundary of
∆ABD at a unique point E and the boundary of ∆ACD at a unique point F . Moreover,
E ∈ AB ∪BD and F ∈ AC ∪CD. If r(O,P ) = r(O,E), then Q = E. If r(O,P ) = r(O,F ),
then Q = F .
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Figure 6: Ray emanating from the interior of a triangle

3 Axioms of Segment Congruence

Segments are not unrelated. We assume that there is a binary relation between segments,
named as “segment AB is congruent to segment CD,” abbreviated as

AB ∼= CD.

Congruence Axiom 1 (CA1). Given two distinct points A,B, and a ray r emanating
from a point A′. There exists exactly one point B′ on r such that B′ 6= A′ and AB ∼= A′B′.
Moreover, if r = r(A,B), then B′ = B; if r = r(B, A), then B′ = A.

B’

A B

A’

Figure 7: Congruence of segments

Congruence Axiom 2. (CA2) If AB ∼= CD and CD ∼= EF , then AB ∼= EF .

Proposition 3.1. (1) AB ∼= AB, AB ∼= BA. (2) If AB ∼= CD, then CD ∼= AB.

Proof. (1) It follows from the latter part of CA1. (2) Let CD ∼= AB′, where B′ is a point
on the ray r(A,B). Then AB ∼= AB′ by transitivity. Hence B′ = B by CA1. We then have
CD ∼= AB.

Congruence Axiom 3 (Segment addition) (CA3). If A ∗ B ∗ C, A′ ∗ B′ ∗ C ′ and
AB ∼= A′B′, BC ∼= B′C ′, then AC ∼= A′C ′.

Proposition 3.2 (Segment subtraction). Given A∗B ∗C and A′ ∗B′ ∗C ′. If AB ∼= A′B′

and AC ∼= A′C ′, then BC ∼= B′C ′.

Proof. Let BC ∼= B′P , where P is a point on the ray r(A′, B′). Then AC ∼= A′P by CA2.
Since AC ∼= A′C ′, then A′P ∼= A′C ′ by CA2. Thus P = C ′ by CA1. So BC ∼= B′C ′.

Proposition 3.3 (Betweenness preserving by congruence of segments). Given AC ∼=
A′C ′ and A ∗ B ∗ C. Then there exists a unique point B′ between A′ and C ′ such that
AB ∼= A′B′ and BC ∼= B′C ′.

Proof. Let AB ∼= A′B′, where B′ is the unique point on the ray r(A′, C ′). Let BC ∼= B′P ,
where P is the unique point such that A′ ∗ B′ ∗ P . Since AB ∼= A′B′ and BC ∼= B′P , then
AC ∼= A′P by CA3. Since AC ∼= A′C ′, then P = C ′ by CA2. So A′ ∗B′ ∗ C ′.
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Proposition 3.4 (Congruence of lines). For any two lines l and l′, there exists a one-
to-one correspondence f : l → l′ such that AB ∼= f(A)f(B) for distinct points A,B ∈ l and
if A ∗B ∗ C then

f(A) ∗ f(B) ∗ f(C).

Proof. Pick two points O ∈ l and O′ ∈ m. We have open rays r̊(O,−), r̊(O, +) of l and
open rays r̊(O′,−), r̊(O′, +) of l′. Define f(O) = O′. For each P ∈ r̊(O,−), there exists a
unique point P ′ ∈ r̊(O′,−) such that OP ∼= O′P ′; define f(P ) = P ′. For each Q ∈ r̊(O, +),
there exists a unique point Q′ ∈ r̊(O′, +) such that OQ ∼= O′Q′; define f(Q) = Q′. We then
have a map f : l → l′. Likewise we have a map f ′ : l′ → l defined in similar fashion. Then
f ′ ◦ f : l → l and f ◦ f ′ : l′ → l′ are identity maps. So f and f ′ are bijections.

Given distinct points A,B ∈ l. If A ∗ B ∗ O or B ∗ A ∗ O, then either A,B ∈ r̊(O,−)
or A,B,∈ r̊(O, +); thus AB ∼= f(A)f(B) by segment subtraction. If A ∗ O ∗ B, then
AB ∼= f(A)f(B) by segment addition.

If A ∗ B ∗ C on l, then there exists a unique point B′′ be between f(A) and f(C)
such that AB ∼= f(A)B′′ and B′′f(C) by the congruence of preserving betweenness. Since
AB ∼= f(A)f(B), we must have f(B) = B′′. Hence f(A) ∗ f(B) ∗ f(C).

Definition 7 (Linear order of segments). For segments AB, CD, if there exists a point
E between C and D such that AB ∼= CE, we write AB < CD or CD > AB.

Theorem 3.5 (Strict total order of segments). For two segments AB and CD, one and
only one of the three holds: AB < CD, AB ∼= CD, AB > CD (trichotomy). Moreover,

(a) If AB ∼= CD and CD < EF , then AB < EF .
(b) If AB < CD and CD ∼= EF , then AB < EF .
(c) If AB < CD and CD < EF , then AB < EF .

Proof. Given segments AB and CD. Let AB ∼= CE, where E is the unique point on the ray
r(C, D). We have one and only one of the three: C ∗ E ∗D, E = D, C ∗D ∗ E. These are
exactly the three cases: AB < CD, AB ∼= CD, AB > CD.

(a) Let P be a point such that E ∗P ∗F and CD ∼= EP . Then AB ∼= EP by CA2. Thus
AB < EF by definition.

(b) Let P be a point such that C ∗P ∗D and AB ∼= CP by definition. Then there exists
a point Q such that E ∗Q ∗ F and CP ∼= EQ by Proposition 3.3 (congruence of preserving
betweenness). Then AB ∼= EQ by CA2. Thus AB < EF by definition.

(c) Let P be such that AB ∼= CP and C ∗ P ∗ D. Let R be such that E ∗ R ∗ F and
CD ∼= ER. Then there exists a point Q such that E∗Q∗R and CP ∼= EQ. Thus AB ∼= EQ,
E ∗Q ∗R ∗ F , and of course E ∗Q ∗ F . Therefore AB < EF .

4 Axioms of Angle and Triangle Congruence

Angles are not unrelated. We assume that there is a binary relation between angles, named
as “angle ∠ABC is congruent to angle ∠DEF ,” abbreviated as

∠ABC ∼= ∠DEF.

Congruence Axiom 4 (CA4). Given an angle ∠AOB and a ray r(O′, A′), where the rays
r(O,A), r(O,B) are not opposite. There exists a unique ray r(O′, B′) on each side of the
line O′A′ such that ∠A′O′B′ ∼= ∠AOB. Moreover, if r(O′, A′) = r(O,A) and the side of OA
is the half-plane H̊(OA,B), then r(O,B′) = r(O,B). If r(O′, A′) = r(O,B) and the side of
OB is the half-plane H̊(OB, A), then r(O,B′) = r(O,A).
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Congruence Axiom 5 (CA5). If ∠A ∼= ∠B and ∠B ∼= ∠C, then ∠A ∼= ∠C.

It is easy to see that angle congruence is reflexive, symmetric, and transitive. So angle
congruence is an equivalence relation on angles.

Definition 8 (Congruence of triangles). A triangle is a collection of three non-collinear
points A,B,C together with three segments AB, AC, BC (called sides), and three angles
∠ABC, ∠ACB,∠BAC, denoted ∆ABC. The point set of ∆ABC, denoted by the same
notation, is

∆ABC := ∠ABC ∩ ∠ACB ∩ ∠BAC.

The interior of ∆ABC is the point set

∆̊ABC := ∠̊ABC ∩ ∠̊ACB ∩ ∠̊BAC.

Two triangles are said to be congruent if there is a one-to-one correspondence between
their vertices such that the corresponding sides are congruent and the corresponding angles
are congruent. More specifically, if a triangle with vertices A,B,C is congruent to a triangle
with vertices A′, B′, C ′ by the one-to-one correspondence A to A′, B to B′, and C to C ′,
written

∆ABC ∼= ∆A′B′C ′ (the order of vertices is material),

then AB ∼= A′B′, AC ∼= A′C ′, BC ∼= B′C ′, and ∠A ∼= ∠A′, ∠B ∼= ∠B′, ∠C ∼= ∠C ′.

Congruence Axiom 6 (Side-angle-side) (SAS). If two sides and the included angle of
a triangle are congruent respectively to two sides and the included angle of another triangle,
then we say that the two triangles are congruent. More precisely, given two triangles with
vertices A,B,C and vertices A′, B′, C ′. If AB ∼= A′B′, AC ∼= A′C ′, and ∠A ∼= ∠A′, then
∆ABC ∼= ∆A′B′C ′.

Corollary 4.1. Given a triangle ∆ABC and a segment A′B′ ∼= AB. Then there exists a
unique point C ′ on each side of the line A′B′ such that ∆ABC ∼= ∆A′B′C ′.

Proof. Choose a side of line A′B′. There exists one and only one ray r(A′, P ) such that
∠B′A′P ∼= ∠BAC by CA4. Then there exists a unique point C ′ on r(A′, P ) such that
A′C ′ ∼= AC by CA1. Thus ∆B′A′C ′ ∼= ∆BAC by SAS.

Proposition 4.2. Given a triangle ∆ABC. If AB ∼= AC, then ∠B ∼= ∠C.

Proof. Consider the one-to-one correspondence A ↔ A, B → C, C → B. We have AB ∼=
AC, ∠BAC ∼= ∠CAB, AC ∼= AB. Then ∆ABC ∼= ∆ACB by SAS. Thus ∠B ∼= ∠C by
definition of congruence of triangles.

Definition 9 (Supplementary angle, opposite angle, right angle). Supplementary
angles and opposite angles are defined as before. A right angle is an angle which is congruent
to its supplement. A closed half-plane is not an angle by our definition of angles; it is
convenient to call it a flat angle.

Proposition 4.3 (Supplementary, opposite, right angle congruence rules). (a) Sup-
plements of congruent angles are congruent.

(b) Opposite angles are congruent each other.
(c) Any angle congruent to a right angle is a right angle.
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Figure 8: Supplements of congruence angles are congruent

Proof. Given two congruent angles ∠AOB ∼= ∠A′O′B′. Pick a point C on the opposite ray
of r(O,A) with C 6= O. Pick a point C ′ on the opposite ray of r(O′, A′) with C ′ 6= O. We
may assume OA ∼= O′A′, OB ∼= O′B′, OC ∼= O′C ′. See Figure 8.

(a) We need to show ∠BOC ∼= ∠B′O′C ′. Since OA ∼= O′A′, ∠AOB ∼= ∠A′O′B′,
OB ∼= O′B′, then ∆AOB ∼= A′O′B′ by SAS. Then AC ∼= A′C ′ by CA3; AB ∼= A′B′ and
∠BAC ∼= ∠B′A′C ′ by definition of congruence triangles. Thus ∆BAC ∼= B′A′C ′ by SAS.
Since OC ∼= O′C ′, ∠OCB ∼= O′C ′B′ and CB ∼= C ′B′, then ∆OCB ∼= O′C ′B′ by SAS. We
see ∠BOC ∼= ∠B′O′C ′.

(b) Consider opposite angles ∠AOB and ∠COD in the left of Figure 8. Both are sup-
plementary to ∠BOC. So ∠AOB ∼= ∠COD by (a).

(c) Let ∠AOB be a right angle. Need to show that ∠A′O′B′ is a right angle. Notice that
∠AOB ∼= ∠BOC by definition of right angles, ∠B′O′C ′ ∼= ∠BOC by (a), and ∠AOB ∼=
∠A′O′B′ by given condition. Then ∠A′O′B′ ∼= ∠B′O′C ′ by transitivity. This means that
∠A′O′B′ is a right angle.

Proposition 4.4 (Existence of perpendicular line). For each line l and each point P
not on l, there exists a unique line m through P perpendicular to l.

P’

P

A Q B

Figure 9: Construction of perpendicular lines

Proof. Pick two distinct points A,B on l. Draw segment AP . Then there exists a unique
ray r(A,C) on the opposite side of line l such that ∠BAP ∼= ∠BAC. Mark a point P ′ on
the ray r(A,C) such that AP ∼= AP ′. Draw line PP ′ = m. We claim that m ⊥ l. See
Figure 9.

If A,P, P ′ are collinear, then A is the intersection of lines AB and PP ′. Clearly, ∠BAP
and BAP ′ are congruent supplementary angles. So they are right angles and m ⊥ l.

Assume that A,P, P ′ are not collinear. Since P, P ′ on opposite sides of l, then r(P, P ′)
intersects l at a unique point Q. We have triangles ∆APQ and ∆AP ′Q. Since AP ∼= AP ′,
∠PAQ ∼= ∠P ′AQ, AQ ∼= AQ, then ∆PAQ ∼= ∆P ′AQ by SAS. Thus ∠AQP ∼= ∠AQP ′ by
definition of congruence triangles, i.e., m ⊥ l.
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Proposition 4.5 (Angle-side-angle criterion) (ASA). If two angles and the included
side of a triangle are congruent to two angles and the included side of another triangle, then
the two triangles are congruent.

C’

A B

C

A’ B’

C’’

Figure 10: Angle-side-angle criterion

Proof. Given triangles ∆ABC, ∆A′B′C ′, and ∠BAC ∼= ∠B′A′C ′, AB ∼= A′B′, ∠ABC ∼=
∠A′B′C ′. Draw the unique point C ′′ on the ray r(A′, C ′) such that AC ∼= A′C ′′. Then
∆ABC ∼= ∆A′B′C ′′ by SAS. Then ∠ABC ∼= ∠A′B′C ′′ by definition of congruence of trian-
gles. Since ∠ABC ∼= ∠A′B′C ′ by given condition, then ∠A′B′C ′ ∼= ∠A′B′C ′′ by transitivity.
This means that B′, C ′, C ′′ are collinear, i.e., C ′, C ′′ are on both lines B′C ′ and A′C ′. Since
intersection point of two lines is unique, we have C ′ = C ′′. Hence 4ABC ∼= 4A′B′C ′. See
Figure 10. Hence ∆ABC ∼= ∆A′B′C ′.

Proposition 4.6 (Angle addition). Given two angles ∠AOC and ∠A′O′C ′. Let r(O,B)
be a ray between rays r(O,A) and r(O,C). Let r(O′, B′) be a ray between rays r(O′, A′) and
r(O′, C ′). If ∠AOB ∼= ∠A′O′B′ and ∠BOC ∼= ∠B′O′C ′, then ∠AOC ∼= ∠A′O′C ′.

Proof. We may assume that OA ∼= O′A′, OB ∼= O′B′, OC ∼= O′C ′, and that B is a point
on AC between A,C. But we did not assume that B′ is a point on A′C ′. See Figure 11.
Then ∆AOB ∼= A′O′B′ and ∆BOC ∼= ∆B′O′C ′ by SAS. We see that the supplementary
angles ∠OBA, ∠OBC are congruent to the angles ∠O′B′A′, ∠O′B′C ′ respectively. Then the
supplementary angle ∠O′B′C ′′ of ∠O′B′A′ is congruent to ∠OBC by the Supplementary
Angle Congruence Rule. Thus ∠O′B′C ′′ ∼= ∠O′B′C ′ by transitivity. Since ∠O′B′C ′′ and
∠O′B′C ′ are on the same side of line O′B′, it follows that ∠O′B′C ′′ = ∠O′B′C ′ by CA3.
So A′, B′, C ′, C ′′ are collinear. Since AB ∼= A′B′, BC ∼= B′C ′, then AC ∼= A′C ′. Since
∠OAC ∼= ∠O′A′C ′, ∠OCA ∼= ∠O′C ′A′, we have ∆AOC ∼= ∆A′O′C ′ by ASA. Therefore
∠AOC ∼= ∠A′O′C ′.

A

O

C

B

A’

O’
B’

C’

Figure 11: Angle subtraction

Proposition 4.7 (Angle subtraction). Let r(O,B) be a ray between rays r(O,A) and
r(O,C). Let r(O′, B′) be a ray between rays r(O′, A′) and r(O′, C ′). If ∠AOB ∼= ∠A′O′B′,
∠AOC ∼= ∠A′O′C ′, then ∠BOC ∼= ∠B′O′C ′.
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Proof. We may assume that OA ∼= O′A′, OC ∼= O′C ′, and that B is a point on AC and B′

is a point on A′C ′. See Figure 11. Since ∠AOC ∼= ∠A′O′C ′, we have ∆AOC ∼= ∆A′O′C ′

by SAS. Thus AC ∼= A′C ′ and ∠OAB ∼= ∠O′A′B′. Since ∠AOB ∼= ∠A′O′B′, OA ∼= O′A′,
∠OAB ∼= ∠O′A′B′, then ∆OAB ∼= ∆O′A′B′ by ASA. Thus AB ∼= A′B′. Since AC ∼= A′C ′,
then BC ∼= B′C ′ by Proposition 3.2 (segment subtraction). Now OC ∼= O′C ′, ∠OCB ∼=
∠O′C ′B′, CB ∼= C ′B′, we have ∆OCB ∼= O′C ′B′ by SAS. Therefore ∠BOC ∼= ∠B′O′C ′.

Proposition 4.8. Given a triangle ∆ABC. If ∠B ∼= ∠C, then AB ∼= AC.

Proof. Let A 7→ A, B 7→ C, C 7→ B. Since ∠ABC ∼= ∠ACB, BC ∼= CB, ∠ACB ∼= ∠ABC,
then ∆ABC ∼= ACB by ASA. Thus AB ∼= AC by definition of congruence of triangles.

Definition 10. An angle ∠AOB is less than an angle ∠A′O′C ′, written ∠AOB < ∠A′O′C ′,
if there exists a ray r(O′, B′) between the rays r(O′, A′) and r(O′, C ′), such that ∠AOB ∼=
∠A′O′B′.

Proposition 4.9 (Strict total order of angles). For any two angles ∠A and ∠B, one
and only one of the three holds: ∠A < ∠B, ∠A ∼= ∠B, ∠B < ∠A (trichotomy). Moreover,

(a) If ∠A ∼= ∠B, ∠B < ∠C, then ∠A < ∠C.
(b) If ∠A < ∠B, ∠B ∼= ∠C, then ∠A < ∠C.
(c) If ∠A < ∠B, ∠B < ∠C, then ∠A < ∠C.

Proof. Given two angles ∠AOB and ∠A′O′B′. There exists a unique open ray r̊(O′, C ′) in
the open half-plane H̊(O′A′, B′) such that ∠AOB ∼= ∠A′O′C ′. If C ′ is on the ray r(O′, B′),
then r(O′, C ′) = r(O′, B′) and ∠AOB ∼= ∠A′O′B′. If C ′ is not on the ray r(O′, B′), there
are two cases.

Case 1. Points C ′, A′ are on the same side of O′B′.
Since C ′, B′ are on the same side of O′A′, then C ′ is contained in the interior of ∠A′O′B′;

so is the open ray r̊(O′, C ′). Thus ∠AOB < ∠A′O′B′.
Case 2. Points C ′, A′ are on opposite sides of O′B′. Then r(O′, B′) meets A′C ′ at P ′

between A′ and C ′ by Crossbar Theorem. Thus r̊(O′, B′) is contained in ∠̊A′O′C ′. By
definition ∠AOB > ∠A′O′B′.

(a) Let ∠AOB ∼= ∠A′O′B′ < ∠A′′O′′C ′′. There exists a ray r(O′′, B′′) between rays
r(O′′, A′′) and r(O′′, C ′′) such that ∠A′O′B′ ∼= ∠A′′O′′B′′ by definition. Then ∠AOB ∼=
∠A′′O′′B′′ by transitivity. Thus ∠AOB < ∠A′′O′′C ′′.

(b) Let ∠AOB < ∠A′O′C ′ ∼= ∠A′′O′′C ′′. There exists a ray r(O′, B′) between the rays
r(O′, A′) and r(O′, C ′) such that ∠AOB ∼= ∠A′O′B′. Let r(O′′, B′′) be a ray between the
rays r(O′′, A′′) and r(O′′, C ′′) such that ∠A′O′B′ ∼= ∠A′′O′′B′′. Then ∠AOB ∼= ∠A′′O′′B′′

by transitivity. Thus ∠AOB < ∠A′′O′′C ′′.
(c) Let ∠AOB < ∠A′O′C ′ < ∠A′′O′′D′′. There exists a ray r(O′′, C ′′) between the rays

r(O′′, A′′) and r(O′′, D′′) such that ∠A′O′C ′ ∼= ∠A′′O′′C ′′. Then ∠AOB < ∠A′′O′′C ′′ by
(b). Thus there exists a ray r(O′′, B′′) between the rays r(O′′, A′′) and r(O′′, C ′′) such that
∠AOB ∼= ∠A′′O′′B′′. Therefore ∠AOB < ∠A′′O′′D′′.

Proposition 4.10 (Side-side-side criterion) (SSS). Given triangles ∆ABC and ∆A′B′C ′.
If AB ∼= A′B′, AC ∼= A′C ′, BC ∼= B′C ′, then ∆ABC ∼= ∆A′B′C ′.

Proof. Let C ′′ be the unique point on the opposite side of H̊(A′B′, C ′) bounded by A′B′ such
that ∆ABC ∼= ∆A′B′C ′′. Draw the segment C ′C ′′. The line A′B′ meets C ′C ′′ at D′ between
C ′ and C ′′. See Figure 12. Then A′C ′ ∼= AC ∼= A′C ′′ and B′C ′ ∼= BC ∼= B′C ′′, i.e., ∆A′C ′C ′′

and ∆B′C ′C ′′ are isosceles triangles. Hence ∠A′C ′C ′′ ∼= ∠A′C ′′C ′ and ∠B′C ′C ′′ ∼= ∠B′C ′′C ′.
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Figure 12: Side-side-side criterion

If A′ ∗ D′ ∗ B′, then the open ray r̊(C ′, C ′′) is contained in ∠̊A′C ′B′, and the open ray
r̊(C ′′, C ′) is contained in ∠̊A′C ′′B′ by Crossbar Theorem; thus ∠A′C ′B′ ∼= ∠A′C ′′B′ by angle
addition. If A′ ∗B′ ∗D′, then r̊(C ′, B′) is contained in ∠̊A′C ′D′, and r̊(C ′′, B′) is contained
in ∠̊A′C ′′D′ by Crossbar Theorem; thus ∠A′C ′B′ ∼= ∠A′C ′′B′ by angle subtraction. Since
A′C ′ ∼= AC ∼= A′C ′′, ∠A′C ′B′ ∼= ∠A′C ′′B′, B′C ′ ∼= BC ∼= B′C ′′, we see that ∆A′B′C ′ ∼=
∆A′B′C ′′ by SAS. Hence ∆ABC ∼= ∆A′B′C ′ by transitivity.

Theorem 4.11 (Euclid’s Fourth Postulate). All right angles are congruent to each other.

E’

A B A’ B’

C C’

O O’

D’

Figure 13: Euclid’s Fourth Postulate

Proof. Given angles ∠AOC ∼= BOC and ∠A′O′C ′ ∼= B′O′C ′; see Figure 13. We need to show
∠AOC ∼= ∠A′O′C ′. Let r̊(O′, P ′) be the unique open ray in H̊(A′B′, C ′) such that ∠AOC ∼=
∠A′O′P ′. It suffices to show that r̊(O′, P ′) = r̊(O′, C ′). Suppose r̊(O′, P ′) 6= r̊(O′, C ′). Then
either r̊(O′, P ′) = r̊(O′, D′), which is contained in ∠̊A′O′C ′, or r̊(O′, P ′) = r̊(O′, E ′), which
is contained in ∠̊B′O′C ′.

In the former case, we have ∠A′O′D′ < ∠A′O′C ′ and ∠B′O′C ′ < ∠B′O′D′ by definition
of order of angles. Since ∠A′O′C ′ ∼= ∠B′O′C ′ by right angle property, then ∠A′O′D′ <
∠B′O′D′ by Proposition 4.9. Note that ∠BOC ∼= ∠B′O′D′ by Proposition 4.3(a), and
∠AOC ∼= ∠A′O′D′. Then ∠AOC < ∠BOC. However, ∠AOC ∼= ∠BOC by right angle
property. In summary we have

∠AOC ∼= ∠A′O′D′ < ∠A′O′C ′ ∼= ∠B′O′C ′ < ∠B′O′D′ ∼= ∠BOC ∼= ∠AOC.

So ∠AOC < ∠AOC; this is a contradiction. In the latter case, we have

∠AOC ∼= ∠A′O′E ′ > ∠A′O′C ′ ∼= ∠B′O′C ′ > ∠B′O′E ′ ∼= ∠BOC ∼= ∠AOC.

So ∠AOC > ∠AOC; this is a contradiction.
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5 Axioms of Continuity

Dedekind’s Axiom (Continuity Axiom). If a line l is partitioned into two nonempty
subsets Σ1, Σ2, i.e., l = Σ1 ∪ Σ1 and Σ1 ∩ Σ2 = ∅, such that no point of either subset is
between two points of the other (equivalently both are convex), then there exists a unique
point O on l such that one of Σ1, Σ2 is a ray with vertex O and the other is an open ray
with vertex O opposite to the other ray. The pair {Σ, Σ2} is called a Dedekind cut of l.

Given two distinct points A,B ∈ l. If A,B ∈ Σi, we have AB ⊂ Σi, i.e., Σi has no
“hole.” Suppose we do not require Σ1 ∩ Σ2 = ∅ in Dedekind’s axiom. If A,B ∈ Σ1 ∩ Σ2,
then we must have A = B. So the intersection Σ1 ∩ Σ2 contains exactly one point O. Thus
Σ1, Σ2 are two rays with the vertex O. So, when Σ1 ∩ Σ2 = ∅ is imposed, we say that the
partition {Σ1, Σ2} determines one point on l.

Definition 11. A subset Ω of points is said to be convex provided that whenever two points
P,Q are contained in Ω then the segment PQ is contained in Ω.

For a line l with a total order ¹, the following subsets of l are convex sets, known as
intervals: line l; rays

r(O,−) = {P ∈ l : P ¹ O}, r(O, +) = {P ∈ l : O ¹ P};
open rays

r̊(O,−) = {P ∈ l : P ≺ O}, r̊(O, +) = {P ∈ l : O ≺ P};
closed interval (segment)

[A,B] = AB = {P ∈ l : A ¹ P ¹ B};
open interval (segment)

(A,B) = {P ∈ l : A ≺ P ≺ B};
half-closed and half-open intervals (segments)

[A,B) = {P ∈ l : A ¹ P ≺ B}, (A,B] = {P ∈ l : A ≺ P ¹ B}.
The points O,A, B are called endpoints of I. For a line not satisfying Dedekind’s axiom,
a convex subset of the line is not necessarily an interval.

Proposition 5.1 (Extended Dedekind’s Axiom). Dedekind’s axiom is valid for any
nonempty interval I of any line l. More precisely, if a nonempty interval I is partitioned
into two nonempty convex sets Σ1, Σ2, then both Σ1, Σ2 are intervals with an endpoint O,
one is closed and the other is open at O.

Proof. Let l be totally ordered so that left and right sides of I are meaningful. If I is empty
or contains exactly one point, nothing is to be proved for the statement is irrelevant. We
assume that I contains at least two points.

Let Σ1 be on the left side of Σ2. Since I is nonempty, the complement l r I has one of
the forms: (a) empty set ∅, (b) a left (open) ray Γ1, (c) a right (open) ray Γ2, (d) disjoint
union of a left (open) ray Γ1 and a right (open) ray Γ2.

Set Σ′
1 := Σ1 ∪ Γ1 and Σ′

2 := Σ2 ∪ Γ2. Then Σ′
1, Σ

′
2 form a Dedekind cut of l. By

Dedekind’s axiom, there exists a unique point O on l such that Σ′
1 is the right closed (open)

ray r(O,−) (̊r(O,−)) with vertex O, and Σ′
2 is the left open (closed) ray r̊(O, +) (r(O, +))

with vertex O. Hence Σ1 is a right-closed (right-open) interval with right endpoint O ∈ Σ1,
and Σ2 is left-open (left-closed) interval with left endpoint O.
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Example. Let Q be the field of rational numbers. Then Q2 forms an affine plane, called
rational affine plane under its points and lines defined by one linear equation. Dedekind’s
axiom is not satisfied by the rational plane. Consider the x-axis l = {(a, 0) : a ∈ Q}. Let
Σ1 = {(a, 0) : a ∈ Q, a2 > 3, a > 0} and Σ2 = l r Σ1. Then Σ1, Σ2 form a Dedekind cut,
that is, they satisfy the conditions of Dedekind’s axiom. However, neither Σ1 nor Σ2 is an
(open) ray of l. In fact, Σ1 = {(a, 0) : a ∈ Q, a >

√
3} is not an interval in Q2 (since it has

no left endpoint).

Dedekind’s axiom implies all of the following axioms.

Euclid’s Proposition. For each segment there exists an equilateral triangle having one of
its sides to be the given segment.

Definition 12. A point P is said to be inside a circle of radius OR with center O if
OP < OR.

Circular Continuity Principle. If each of two circles has one point inside but outside the
other, then the two circles intersect at two points.

Elementary Continuity Principle. If one endpoint of a segment is inside a circle and
the other endpoint is outside, then the segment intersects the circle.

Archimedes’[′a:ki′mi:di:z] Axiom. Given a segment AB and a ray r with vertex O. For
each point P 6= O on r, there exist an integer n and a point Q on r, where OQ ∼= n · AB,
such that either Q = P or O ∗ P ∗Q.

Aristotle’s[′æristotl] Axiom. Given an acute angle ∠AOB and a segment CD. There
exists a point Y on the ray r(O,B) such that XY > CD, where X is the foot of Y on the
ray r(O,A).

Proposition 5.2 (Dedekind’s implies Archimedes’). Dedekind’s axiom implies Archimedes’
axiom.

Proof. Given a segment AB and a ray r with vertex O. A point P ∈ r is said to be reachable
by AB if P = O or there exist an positive integer n and a point Q, such that OQ ∼= n · AB
and O ∗P ∗Q. Let Σ1 be the set of points on r reachable by AB, and points on the opposite
ray of r; so O ∈ Σ1. Let Σ2 be the complement of Σ1 in the line l that contains r; Σ2 is
also the complement of Σ1 in r. We claim that Σ2 = ∅. (If so, all points on the ray r are
reachable by AB, which is Archimedes’ axiom.)

Suppose Σ2 6= ∅. We claim that {Σ1, Σ2} is a Dedekind cut of l. One the one hand, let
P,Q ∈ Σ1 be distinct points. If both P,Q are on r or on the opposite ray of r, it is clear
that PQ ⊂ Σ1. If P is on the opposite ray of r and Q ∈ r, then PO ⊂ Σ1 and OQ ⊂ Σ1;
so PQ = PO ∪ OQ ⊂ Σ1. On the other hand, let P,Q ∈ Σ2 be distinct points. Suppose
PQ 6⊂ Σ2; there exists a point R ∈ Σ1 such that P ∗ R ∗ Q; since R can be reached, so is
P ; thus P ∈ Σ1, which is a contradiction. Therefore {Σ1, Σ2} is a Dedekind cut of l, and
determines a unique point O′ on l.

Case 1. O′ ∈ Σ1. Then Σ1 is a ray with vertex O′. Since the opposite ray of r is contained
in Σ1, then O′ ∈ r and Σ2 is an open ray on r with vertex O′. Let O′ be reached by laying
off n copies of AB starting from O. Then by laying off one more copy of AB on r starting
from O′, we get points of Σ2 being reached by AB. This is impossible.

Case 2. O′ ∈ Σ2. Then Σ2 is a ray on r with vertex O′ 6= O, and Σ1 is the opposite
open ray with vertex O′. Laying off one copy of AB starting from O′ on the open ray Σ1, we
obtain a point P ′ in Σ1. Then any point Q′ such that P ′ ∗Q′ ∗O′ is reachable by AB. Thus
by laying one more copy of AB starting from Q′, the point O′ is reachable. So O′ ∈ Σ1. This
is a contradiction.
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Proposition 5.3 (Dedekind’s implies Elementary Continuity). Dedekind’s axiom im-
plies Elementary Continuity Principle.

Proof. Let γ be a circle with center O and radius OR. Let AB be a segment with A inside
and B outside γ, i.e., OA < OR and OB > OR. Let Σ1 denote the set of points on AB
inside γ, and Σ2 the subset of points on AB outside or on γ. Then Σ1, Σ2 form a Dedekind
cut for the segment AB by trichotomy of segments. Dedekind’s axiom implies that there
exists a unique point P on AB such that Σ1, Σ2 are intervals with endpoint P , one contains
P and the other does not contain P . We claim that P is on γ, i.e., OP ∼= OR.

Case 1. OP < OR. Then P ∈ Σ1. Take a point Q ∈ Σ2 such that |PQ| = (|OR| −
|OP |)/2. By triangle inequality we have

|OR| < |OQ| < |OP |+ |PQ| = |OP |/2 + |OR|,

which is a contradiction.
Case 2. OP > OR. Then P ∈ Σ2. Take a point Q ∈ Σ1 such that A ∗ Q ∗ P and

|PQ| ≤ (|OP | − |OR|)/2. Since |OQ| < |OR| and |QP | = |PQ|, then by triangle inequality

|OP | ≤ |OQ|+ |QP | < |OR|+ (|OP | − |OR|)/2 = |OR|/2 + |OP |,

which is a contradiction.
So we must have OP ∼= OR.

Relationship between the Axioms of Continuity.

Dedekind’s axiom ⇒ Archimedes’ axiom, Circlar Continuity Principle

Archimedes’ axiom ⇒ Aristotle’s axiom

Circlar Continuity Principle ⇒ Elemenatry Continuity Principle
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